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Typical DoD Qualification/Certification Approach 3:%
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Building Block Test Structure
Required for Certification

Specimen @ Cost Time
Count ($M) (Yrs)

. 2-3 100-125 4
Analysis

validation

Design-value

development

Elements 2000-5000 @ 10-35 3
Material
property Coupons 5000-100,000, 8-15 2
evaluation

Comprehensive understanding of manufacturing variation at different scales is needed
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size scale

Current Approach Does Not Capture Impact of n}a‘%
Manufacturing Variability Across Size Scales e

Building Block Test Structure
Required for Certification

Specimen @ Cost Time
Count ($M) (Yrs)

2-3 100-125 4 1

+ Collect statistically valid
Y populations of properties for
' 10-30 10-20 | 3 small size specimens

Base larger scale structure

Analysis
validation

designs on measured
material character

Material

property
evaluation

Comprehensive understanding of manufacturing variation at different scales is needed
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size scale

Current Approach Does Not Capture Impact of ot A,

Manufacturing Variability Across Size Scales e b
! Effects of scale-up are not |
Building Block Test Structure _ _ ! captured until the sub- |
i ificati Specimen | Cost Time component / component |
Required for Certification Count ($M) um/i Ievelptestlng p i

100-125 4 o e e

: Redesign/Rework

I [terations result in budget

Analysis
validation

1 escalation and schedule

L
L LT e L < 1 O N N S
development Elements | /20005000 1035 3 E-Iﬁpa_ct! Contemporary

) platforms reuse traditional

evaluation l new technology

Material \\ — approaches to reduce the
property Coupons 5000-100,000 8-15 2 : cost and risk of qualifying
u 1l

Comprehensive understanding of manufacturing variation at different scales is needed
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size scale

Current Approach Does Not Capture Impact of
Manufacturing Variability Across Size Scales
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Building Block Test Structure -
- . - Specimen | Cost
Required for Certification Count | ($M)

Analysis
validation

100-125

Effects of scale-up are not
captured until the sub-
component / component
level testing

4

Redesign/Rework
Iterations result in budget
escalation and schedule
delays

Design-value
development

_ /’ 2000-5000 = 10-35 | 3
Material \\
property Coupons 5000-100,000, 8-15 2
evaluation ﬂ T

Impact: Contemporary
platforms reuse traditional
approaches to reduce the
cost and risk of qualifying
new technology

| Manufacturing Process (foundation) ' - Impact of Manufacturing Parameters and

T Variability on material properties are never
captured, understood, or controlled

Comprehensive understanding of manufacturing variation at different scales is needed
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. New Manufacturing Technologies: nd‘%
DARPA Perception is NOT Reality e

Perception: PROMISE Reality: CHALLENGE

Current manufacturing environment
does not capture process data;
poor understanding and control of
materials, machines, and processes

Greater component
design flexibility, lower
buy-to-fly ratio, no

' tooling required

Metal Additive
Manufacturing

= 8 | =——— Unitized structures; Bonded parts also bolted; adhesive
§ 9 reduced cost, weight, part treated as env. sealant; quantify
S g = count, time, and labor process control for manual process
(o)
(@

Real time condition of —= mg=—= Embedded systems act as defect

structure; condition based centers; data acquisition and

maintenance; reduced life processing; space, weight, and
cycle costs power on platform

Structural Health
Monitoring

Challenges are barrier to transitioning technologies to production
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1.:1)  Open Manufacturing Approach and Goals :}ﬁ’é
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Probabilistic sensing and routine data-capture capabilities
that can be transferred to manufacturing environment

Maturing multi-physics and data-based models allow for
understanding of process/microstructure/property
relationships

Degree of C
coooo
[NERR TR

New probabilistic frameworks and verification and validation
techniques can link data sources and simulation modules to
output product performance with quantified uncertainty

A Predict ]
distribution :

Test to -
PQPU|ate j
ai

Probability

Location specific probabilistic description of
product performance for rapid qualification
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DARPA Open Manufacturing Focus Technologies
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Two focus technologies chosen to apply and validate OM methodologies

Metals Additive Manufacturing

Emerging technology that is stuck with limited transition

Direct Metal Laser Sintering (DMLS)

powder laser In718 part. «
2 m — .
bed b2 sintered '

nftal <

Electron Beam Direct Manufacturing (EBDM)
: e-beam Ti part \ ot

Ti wire
feeder

H
. raster

P>

deposited Ti substrate

N T e, ;
. Typical microstructure %5
e T A .

» Reduces material usage, eliminates costly and lengthy
tool development, and provides design freedom

+ Cost benefits of additive manufacturing are negated
by high cost of traditional “make and break”
qualification

2 performers

Bonded Composite Structures
Holy grail for composite community for last 30 years

¥ 'Bonded Pi-joint 1 insert
[ s . adhesive

Pi
section

N skin

« Bonded composites allows unitized structure with
lowered labor and reduced schedule

« Manufacturing process is not equipped to capture all
variability

« Therefore, certifiers and designers don’t have
confidence that the process is well-controlled

 Bolts are added after bonding

1 performer

Accelerate the manufacturing innovation timeline for these high impact processing technologies
to unlock design and higher performance opportunities
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Why We Need to Quantify Manufacturing 1(%
DARPA Process Reliability 3-3\0’

r Load

B-Basis Allowables
.y/ y Strength

\ Traditional Calculation:
Strength ~ Fie e 1m)

Load - Ibs
. . G: Geometry
InterseCtlor_] IS E: Environment
Structural Failure T: Mfg Tolerances

M: Material Properties

PDF

10 Peel PIy.
Bayesian TRUST Enables:
0.8 Process Control ~
s Strength ~ Fig ¢ 1 map)
w 06 g
=) : Do :
Coal i@ P: Process Control
' Pt
) T N 1. % /8 B
005" 475 6 7 8 9 10
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Transition Reliable Unitized Structures l(%
L) (TRUST) Approach e

Manufacturing Data Pedigree TRUST Enables:
Protocols & environment

Process data Bayesian Process Control Strength ™~ Fig ¢ t map)

Bond preparation method

In Process Inspection y = [ Geometry
NDI — ) y E: Environment
E'CFL vt T: Manufacturing Tolerances
M: Material Properties

DCB & Pi-CB Data Pedigree ; P- Proco it ol
Test methodology 45 |
Data reduction
Failure mode

Input Models

Informatics DB &
App Server

SISA|eUuY/
Aljigel|ay

Regression Model

« Capture shop floor variability into informatics database that informs
probabilistic Bayesian Process Control (BPC) model

« BPC model determines critical process parameters, predicts bond quality,
and computes confidence to ultimately quantify bonding process
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Test Data is Foundation of BPC Model

e
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Discriminate bond performance
by DCB

Cobanded Adherend (18-ply prepreg)
Unbonded Insert

,.Ad hesive

k. 4
\ \_Precured Substrate
Interface

Determine model by forward and
reverse stepwise regression

f(DCB)
=Bo + ,leSurfPrep + IBZxPrepBondTime
+ ﬁSxOutTime + ﬂ4xContamination

+ BsXpprXnumidity T BeXorXnumidity

tﬁﬂspxpm + BgXspXor /

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
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Rigorously populate
I’"IIMIIMI Irnl informatics database:

Process baseline and 3
DOE test matrices

Over 500 parameters
tracked per test coupon
Over 1500 individual
coupons tested for initial
database

Leverage tribal knowledge of important parameters

and test regression model

f =0+
ﬂlxl +ﬁ2X2 +ﬂ3x3 +184X4 +ﬂ5x5 +ﬂ6X6 0
IB7X7 +188X8 +ﬂ9X9 +IBIOX10 +,H“X11 +1812X12 =

2 ) ) ) 2
BiXi + BiaXs + PisXs + BigXs + PinXs +

7 - e 7 o - - i i i
ﬁlSXG +ﬂ19X7 +ﬂ20X8 +ﬂ21x9 +ﬁ22X11 +ﬂ23X12 = T Hand Letion pniamination

BosXiXs + BosXiXs + PrgXo Xs + oy XsXg +
BosXsXo + BagXsXig + BioXoXig + Py X X, + €

where X;: Pre-Bond Room Temperature

X,: Pre-Bond Room Humidity
X3: Adhesive Out Time

X4: Sand-To-Bond Time

Xs: Sandpaper Grit

X¢: Sanding Duration

X7: Cure Cycle Vacuum

Xo: Skin Oil Contamination
Xig: Cure Cycle Ramp Rate
Xi1: Cure Cycle Hold Temperature
X5t Cure Cycle Hold Time
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BPC Model Requires Iterative Learning at 31‘%
Increasing Scale eV b Sl

Wing:
Calculated
eliability

= R B o
=3 Q
g B Process Data 3
- z
O ® Baseline o
|
Q3 Physics Based Modeling
u = n-Cured Laminate Degree of Cure
o M ::>o.$ — o il |
9 08 11— 1op Middle | |
z z § gg ——Bottom Middle | §
853 i 2
m §‘u43 /
g‘ Q 3:2 _ Brae
T E 0 10,000 20,000 30,(:-(:'0“e‘(‘23000 50,000 60,600 70,000
g gl = —~
e - Q
E g Bayesin " Bayesian %
— pdating 7
g E M;rdeis are gfdateld P rocess &
=i o Control
(&) meme | b %03 1 5 6 7 8 9
O Catinton
< Testing Result ﬁiﬁiﬂf’g{ﬁnﬁ’xﬁ‘”
(Mean GR) parameler s recorded
Recorded
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DARPA Advancing BPC to Pi-CB and Bond Units
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Pi-CB specimens enable adaptation
and scale up of DCB regression
model to validate predicted against
actual bond performance

f(PiCB) = K = f(DCB)

BU,  BU,

Bond Unit: Defined as homogenous,
discrete section bonded with:
 Single pi, adhesive, peel ply batch
« Common out times

 Identical processing parameters

A wing will have different spatially
predicted process reliabilities:
 For BU,, BU,...BU,

The Bond Unit enables spatial reliability predictions
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DARPA Improving BPC Reliability Model D‘(%
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Calculate Wing Process Reliability
Translate process variables to product reliability
Update models for process variables
Quantify effect of contamination
Reduce inherent variability

Phase I Data

| Good Bonds: Mixture |

Characterize Bad Bonds
* Analyze data for manufacturing
process parameters that create bad bonds.
* Characterize the bonding surface to identify
appropriate bond preparation.

% Cohesive Faflure

w0 [

% Laminate Failure

<CER:C N \/alidate Model’s Ability to Predict Complex Structure
Sl © Develop & implement geometry factors from DCB
to Pi-CB.

Pi Preform
Web

* Validate reliability model on Pi-CB across broad
process & contamination Parameters.
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@ Exercising BPC Model on Real Structure :::’é
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Component Wing Box
« AFP skins

» Sandwich ribs / spars

« MTM45-1 / IM7

» Pi-joined assembly

The Objectives
« Design:

» Incorporate Pi-CB’s into a three dimensional article
 Build:

» Bring BPC to a three dimensional article
« Incorporate manufacturing / process complexities
« Move out of the ISO 7 clean room, & explore associated realities
* Find unknown unknowns!
« Test:
« Extract Pi-CB’s from article for evaluation.
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DARPA Scaling Up BPC Model with Less Data

<
e
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Bonded k >> 109 x 44 x 15 TBD
Wing

gg;? Pt ~109x44 x 15  TBD (Phase 3)

. £(BU)
Bond Unit ll >12.0x80x60 [
Pi-CB B 120x80x60 S@B

Specimen = f(DCB) + Boxn

f(DCB)
=po+ ﬁlxsurfPrep + :BZxPrepBondTime

9 o 0 X 1 . 0 X 0 . 3 + B3Xoutrime + BaXcontamination

+ BsXpprXhumidity + BeXor XHumidity
+ Brxspxppr + PsXspXor

Nominal Size, Bayesian

inches Model
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0/1/5

0/13/65

0/147/50

1500/1600/250

# Samples
(P1/P2/P3)

Projected

Phase 2
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